How to Train for a Dragon: Preparing for the First ISS Commercial Partner

Via universetoday.com

If everything holds, early Saturday Tuesday will see the  launch of the first commercially-operated space vehicle that will provide supplies to the International Space Station.  This is an important milestone for NASA’s potential commercial spaceflight partners and one that will hopefully restore some positive vibes to our struggling human spaceflight program.  This flight represents the culmination of 6 years of work between NASA and SpaceX and over that time we’ve had to learn quite a bit about working with each other.  There have been many challenges and lessons learned over the past few years as we’ve prepared for this moment, many of which I know little to nothing about, but I thought I’d share a few of the things we had to do  to get to this point.

At first, we didn’t know what to expect out of this endeavor.  This was not Boeing or Lockheed Martin or any other partner we had experience working with.  SpaceX was a complete unknown.  We didn’t know what to expect from them and they didn’t know what to expect from us.  The first thing we had to do, just like we did with all the international partners, was learn to speak the same language.  Once Dragon gets close enough to ISS, it falls under the authority of the NASA Flight Director and Mission Control Team.  This means SpaceX needs to operate within a certain framework, it needs to be able to provide the right data to the team in Houston and the Dragon control team in California must be able to operate in concert with the ISS control team in Houston.

Our first challenge, as with any mission, is to figure out what and who needs to be trained.  Obviously, the astronauts on ISS need to learn to operate Dragon and be able to successfully capture the spacecraft.  SpaceX will train the astronauts on the spacecraft systems and operation.  For these test flights, astronauts will spend a day or two at the SpaceX facility in Hawthorne, CA. There the SpaceX engineers will teach them about the design of the craft.   In order to decrease travel costs, training for cargo resupply flights will actually occur in Houston at a mockup located at Johnson Space Center.  But for the test flights, every crew that could potentially be on-orbit when Dragon was launched spent a couple of days out at SpaceX.

Before this astronaut training occurred, the NASA training lead assigned to the flight offered a bit of guidance to SpaceX on how to scope the content the crew needed.  We’ve been training ISS crews for 15 years.  The information provided to astronauts is carefully scoped to focus training only on the things they really need to know.  We’ve tried to eliminate as much superfluous content as possible.  The training program is far from perfect, but it has been well refined over the years.  Our initial goal was to help the SpaceX team be showing them our best practices for how to provide training so that they may learn from our mistakes.

With the initial crew training in place, we could turn our attention to flight control team training.  The NASA Station Training Lead, Flight Director, and SpaceX leads worked together to identify what the flight control teams would need to practice in order to be ready to fly the mission.  We needed to practice the Dragon rendezvous with ISS, both under nominal conditions where everything goes smoothly and off-nominal conditions where the teams can practice responding to contingency situations.  We would need to practice have the ISS robotic arm grapple, or grab hold, of Dragon and berth it to ISS.  We would like to practice the ingress and activation of Dragon systems once it is docked and make sure both teams know what to do in the event an emergency occurs while Dragon is docked.

To do all this, we would need to run simulations and to run those simulations we would need a simulator.  SpaceX would operate a simulator of the Dragon vehicle, NASA would operate a simulator of ISS, and we would have to figure out a way to get the two of them to work together.  This isn’t like getting a couple of people together to play Left 4 Dead; this is like trying to connect someone playing Skyrim with a group of people playing World of Warcraft.  The simulators had to exchange the right information, they  needed to stay in sync, one needed to be able to follow the lead of the other, and they needed to do it all with little to no lag.  This is an incredibly difficult process, so much so that we had to find interim solutions for the demo flight until we can put in place a permanent solution for future missions.

Once the simulators could function together, then we could practice Dragon rendezvous, berthing, and ISS-docked operations with both the SpaceX team at Hawthorne and the NASA Mission Control Team in Houston through  multiple simulations.  Prior to every simulation, the training leads for NASA and SpaceX would coordinate on the script for the sim.  We plan out every malfunction and discuss the expected outcome so that we can ensure we are maximizing the training value of the simulation.  We’ll run more than a dozen of these to ensure that the two teams know how to communicate, to make sure SpaceX knows what data NASA needs at a moment’s notice, and to make sure we’re prepared for the truly horrific contingencies.

The worst possible outcome here is that Dragon loses control on approach to ISS and there is a collision between the two vehicles that puts the lives of the ISS crew at risk.  This happened with the Russian MIR Space Station in 1997, when an automated Progress supply vehicle collided with that station.  We are well-acquainted with the risks.  We know what we need to protect against.  Everyone on both control teams and the ISS crew needs to fully understand their role in safely bringing Dragon to ISS.

That brings me to the final bit of preparation – on-board training for the ISS crew.  Astronauts Don Pettit and Andre Kuipers will be monitoring Dragon’s approach and have the ability to abort that approach if Dragon malfunctions.  They will also be responsible for grappling the capsule with the ISS robotic arm.  While they were well-trained prior to their mission, they arrived on ISS in mid-December and that knowledge is hardly fresh in their mind.  So the training team puts together a series of review lessons with a laptop-based simulator that allows the crew to practice what they’ll need to do.  They’ve gone through several of these sessions over the past few weeks.

At this point, the crew is trained; the mission control teams are trained.

Everyone in Houston is ready to catch a Dragon.